x
請使用Chrome瀏覽器

108年微脈衝雷射雷達系統操作維護及資料解析專案計畫

 專案計畫編號
 經費年度 108年度
 計畫經費 2,839千元
 專案開始日期 2019/04/02
 專案結束日期 2020/03/31
 專案主持人 王聖翔
 主辦單位 監資處
 承辦人 張志偉
 執行單位 國立中央大學
 專案分類 大氣空氣
 中文關鍵字 微脈衝雷射雷達、氣膠垂直分布、國際合作
 英文關鍵字 Micro-pulse lidar (MPL), Aerosol vertical distribution, International collaboration
 協同主持人
 共同主持人
 計畫聯絡人 吳莆馨
 計畫聯絡電話 --
 計畫聯絡信箱 --
 專案審查者 張志偉
 專案審查時間 2020/05/27
 專案核對者
 專案核對時間

108年微脈衝雷射雷達系統操作維護及資料解析專案計畫

 中文摘要 空氣污染與氣象條件息息相扣,從中小尺度環流至邊界層氣象的掌握,皆影響空氣污染預報與分析的成效。在過去的幾十年裡,東南亞各地區,有著高度的經濟與人口成長,大量增加的各類工廠、人為活動甚至生質燃燒等,便更進一步地降低此區域空氣品質。而台灣本土的空氣污染問題亦日益受到重視,中部至雲嘉南空品區經常性出現高PM2.5污染事件,類似之污染事件除了受排放源直接影響外,大氣擴散條件不佳亦為元凶之一,因此探討邊界層內的熱動力結構特性,將有助釐清污染成因。地面空氣品質監測網雖然能夠提供地面以及區域性的特性,但卻無法解釋垂直方向上氣膠分布的特性,因此利用光學遙測技術於長時間持續監測垂直方向氣膠光學特性,提供污染物在垂直剖面上隨時間演變的資料便顯得重要。本計畫之目標與工作內容為(1)執行臺灣本島北、中、南三區微脈衝雷射雷達系統固定站之操作及維護;(2)協助評估並建置輔助固定站觀測之相關支援事項;(3)協助提供微脈衝雷射雷達系統及太陽光度計之專業諮詢及相關儀器評估、監測站運轉之環境與安全資訊;(4)建構觀測資料庫並定期完成資料品質保證與品質管制作業;(5)整合微脈衝雷射雷達系統與環保署空氣品質測站等監測資料,解析高污染事件之可能成因;(6)建立經驗模式,每工作日提供相關監測資料檔案說明,如假日遇高污染突發事件比照辦理,輔助空氣品質預報作業;(7)提供突發高污染事件之資料分析;(8)提升技術能力達亞洲指標站水準,強化維護測站儀器及設備零件、耗材更換。執行之重要成果如下: • 建立各項微脈衝雷射雷達系統相關作業流程SOP,包含固定站選址評估、儀器操作與定期維護方法、每月執行餘脈衝及觀測背景值校正、歲修期間之保養檢修、光達資料傳輸與反演、高污染個案分析,及突發事件調度作業。針對不利觀測之因素進行改善措施,並提供建議搭配光達觀測所需新增之設備。今年度完成建置輔助固定站觀測之4G傳輸設備建置。 • 建立資料品質管控程序及資料有效值對照表,特別針對儀器故障維修、供電異常等狀況,每月執行餘脈衝及觀測背景值之校正作業、並實施資料品保品管作業,確保資料可用率與穩定性;持續更新即時顯示網頁與觀測資料庫之維護。 • 以客觀統計方法定義出高污染並建立事件資料庫,將光達所觀測的氣膠垂直分布,整合地面空品與相關氣象資料,進行時間與空間上的多尺度分析,觀察污染物垂直及水平方向分布情形,釐清區域性污染傳送特徵,深入了解高污染事件之成因。發展邊界層高度反演技術及背風渦漩研究,做為高污染事件之診斷應用。 • 完成更新中大微脈衝雷射雷達站房並達NASA MPLNET之亞洲指標站標準,強化微脈衝雷射雷達之資料反演技術,提升校正設備規格與能力,以符合進行比對及儀器校驗所需之空間環境。 • 為提高資料品質並加強國際交流,本計畫持續與NASA MPLNET合作,MPLNET主持人與工程師分別來臺進行資料反演技術、亞洲指標站功能與設備確認、儀器零組件更換技術、WFR更換與校正方法等傳授與指導;本團隊亦派遣相關人員至日本早稻田大學,以及美國UMBC和微脈衝雷射雷達原廠進行交流。
 中文關鍵字 微脈衝雷射雷達、氣膠垂直分布、國際合作

108年微脈衝雷射雷達系統操作維護及資料解析專案計畫

 類型  檔名  說明
 期末報告  期末報告定稿.pdf(34.3MB)  期末成果報告
最新版公開日期: 2020/6/30 上午 12:00:00

2019 Micro-pulse lidar operation, maintenance, and data analyzing project

 英文摘要 The deterioration of air quality is strongly related to the meteorological condition. A better understating on the microscale, mesoscale, and PBL meteorology can effectively help the implement of air quality forecast and analysis. In the past decades, the Southeast Asia has experienced remarkable economic and population growth. The large increase in various types of factories, human activities, and biomass burning decreased the air quality over this region. The local air pollution of Taiwan gets more attention recently. High PM2.5 concentration events occur frequently in Central and Southern Taiwan, not only due to the emissions but also the weak atmospheric diffusion condition. Therefore, understanding the thermodynamics structure within PBL can help to clarify the cause of deteriorating air quality. Although the EPA Taiwan Air Quality Monitoring network provides the air quality information at the ground level, it cannot explain the PM2.5 characteristics in vertical. Therefore, observing the aerosol optical characteristics in the vertical direction by using remote sensing techniques, which can monitor the change of pollutants over time and space, is complementary for air quality monitoring. The objectives and task of this project are: (1) to execute the operation and maintenance of the Micro-pulse lidar systems of three stations in Taiwan;(2) to assist in planning and establishing permanent stations and supporting matters;(3) to offer professional consulting for micro-pulse lidars and sunphotometers, and site safety information for station operating;(4) to build the lidar observation database and accomplish the operations of data QA/QC;(5) to integrate the observational data based on EPA MPL systems and air quality monitoring station, and further analyze the possible causes of high pollution events;(6) to establish the experience with lidar data and offer the daily data report, as well as supporting air quality forecast;(7) to offer the data analyzation of unexpected high pollution events;(8) to upgrading the techniques and equipment conform to the standard of Asia reference station, and intensify the replacement of components for maintaining the stations and equipment. The important achievements from this project are listed as follows: • We had established the SOP flow chart for each maintenance work, including station location choosing, instrument operating and maintaining, AP/DC calibration procedure, annual inspection, data transmission and retrieving, high pollution case analyzation, and the instrument moving for emergencies. We also provided advices about the supporting equipment lists to improve the function of lidar stations, the issues which affect lidar observation. We had set up the 4G device servers for each permanent station in 2019. • We had established the data management procedure and QC flag table, especially for the instrument repaired, power abnormal, and so on. We had executed the AP/DC calibration and data QA/QC procedure on schedule to ensure the availability and stability of MPL data. The MPL data has been posted to webpages and database real time and update to EPA server simultaneously. • We applied a statistical method to define the high pollution events in this year and set up a database for case studies. We systematically analyze those pollution events with observational data obtained from EPA MPL system and air quality monitoring stations in Taiwan. We explained the causes of high pollution events based on multiscale analysis including vertical and horizontal distribution of particulate matters and meteorological conditions. The results from those case studies significantly improve our understanding on the air quality deterioration. To enhance the analysis of high polluted events, we provided and developed a retrieval process of planetary boundary layer heights and the leeward-side vortex analyses. • We had upgraded EPA NCU MPL station with capability for high quality measurement and meet to the standard of Asia reference station. We intensified the techniques of data retrieving, and upgraded the calibrating equipment to establish an environment for MPL inter-comparison. • We continued to cooperate with NASA MPLNET. The chair of MPLNET and the main engineering staff came to Taiwan for discussing data retrieval techniques, inspecting Asian reference station, and educating the techniques on calibrating and replacing components. We also sent our members to visit the Japan NIES and Waseda University in Japan, and visit UMBC and Sigmaspace company (now Geosystems) in the US.
 英文關鍵字 Micro-pulse lidar (MPL), Aerosol vertical distribution, International collaboration

行政院環境保護署 10042台北市中正區中華路一段83號 地圖 客服專線(02)2586-7890 分機 10258
請使用1024*768px以上(含)螢幕解析度與Chrome瀏覽器以獲得最佳網頁瀏覽環境
資料更新日期:2020/08/11

為尊重著作權,請詳讀以下聲明之後,若同意以下聲明 ,請輸入驗證碼再按下「我同意」按鈕,謝謝!

免責聲明

在使用環保專案登錄系統(以下簡稱"本網站")下載資料前,請仔細閱讀以下的內容。如您使用本網站,即表示您已完全了解並且同意遵守下列說明及條件。本網站所提供之所有資訊由行政院環境保護署(以下簡稱"本署")負責彙編,只供一般參考。本署雖已力求資訊的真實及準確,但對於該資訊在任何特定情況下使用時的準確性或恰當性,未有任何明示(明確)的和非明示(隱含)的陳述、申論或保證。基於服務民眾方便快速找到相關環保專案資訊,本網站部分資料乃利用超連結等技巧連結至其它網站。以此方式所獲得的資訊內容或廣告,本網站並未加以修改或彙編,本署對此資訊或資訊提供之人士或機關(構)亦無影響力。對於該等網站資訊之即時性及正確性,本署不承擔任何保證或法律責任(不論該等責任是如何導致的)。使用者有責任自行評估本網站所公布的一切資訊,對於因本網站所提供之任何資訊(包括數據或程式),倘引起的任何損失或損害,本署概不負責。本署保留權利,可隨時省略、暫停或編輯本網站中由本署編製公布的資料,而無須給予任何理由,亦無須事先通知。

版權公告

本網站刊載之內容,例如:文字敘述、圖片、程式、錄音、影像與其他資訊等,均受均受中華民國著作權法相關條文保護,屬於行政院環境保護署(以下簡稱"本署")所有,未經本署合法授權,不得擅自重製、修改、編輯、轉載、散布、或以其他方式非法使用。在限於個人及非商業目的的情況下,使用者可依智慧財產權法律之相關規範,自由瀏覽及使用本網站,或下載本網站上明示提供下載之相關資料,但請註明出處。

取消